Big Data Infrastructure for Educational Data

SLATE Kick-Off Meeting, 2016-06-09

Klaus Johannsen Center for Big Data Analysis, Uni Research AS

Overview

- Center for Big Data Analysis
- SLATE Cluster 2
- Big Data Infrastructure
- Machine Learning

Center for Big Data Analysis

Vision

Create value from data

- Overall objectives
 - Promote big data in sciences
 - Become the leading scientific big data center in Norway
 - Realize science based services using big data
- Key
 - Master the technical and scientific challenges lying in big data
 - Here:
 - (1) Design the big data infrastructure for educational data
 - (2) Develop an appropriate machine learning methodology

Center for Big Data Analysis – Structure

- Staffing and Competences
 - The staff currently corresponds to 9.3MNOK/a, to increase
 - Expertise in HPC, grid-, cloud computing, e-IS development, middelware development, software engineering, web-programming, data modeling, artificial intelligence, optimization
- IT-infrastructure
 - Hadoop HDP-2.4, Spark, Kafka, HBase, Mahout, Weka, ...
 - Linux cluster 200 cores, to increase ...
 - Storage 100TB, to increase ...

SLATE – Cluster 2

- Analyze educational data (big and small) to
 - Understand students: student modeling, performance assessment & prediction, courseware recommendation, grouping of students
 - Assist instructors: analysis of student's progress, automated feedback to improve teaching effectiveness
 - Assist institutions: courseware development, course planning, student cohort comparison, instructor assessment
- Big Data methodologies can help traditional analysis of educational data by
 - Automatically discover complex pattern in large data sets
 - Carry out real-time analysis for immediate feedback

SLATE – Cluster 2

- Project 1: Big Data e-Infrastructure for Educational Data
 - Host of raw primary educational data
 - Support for analysis, comparison & manipulation of data
 - Interfaces to external data sources (MittUiB, Mi Side, MOOC)
- Project 2: Case study at the University of Bergen
 - Discussion/decision about research agenda
 - Ingestion of data from UiB (MittUiB, Mi Side)
 - Learning analytics

Research

- Project 3: National Dugnad: Goals, Guidelines & Policy
 - Broad national discussion about Big Data, Learning Analytics,
 Educational Data Mining discussing
 - Pedagogical, philosophical, ethical, juridical & cultural issues

Big Data Infrastructure

- Big Data compute and storage engine
 - Enables storage, analysis, data science and visualizations
 - Real-time and batch
 - Scalable, no limitation on data sizes or performance
 - Capable of handling a wide range of data types and sources
 - Structured and unstructured data
- Close collaboration with researchers in SLATE and data holders
 - Enables meaningful data structures, analysis and visualizations

Big Data Infrastructure

Data import Data import Data structure Data import Data structure Data build bu

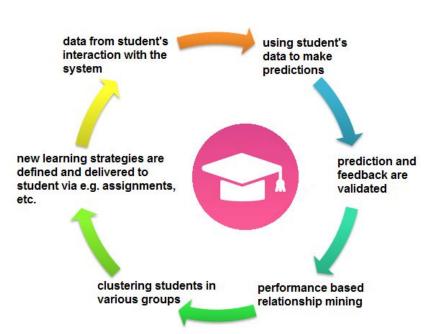
- Export from Canvas "MittUiB" and other sources
- Prepare and import data into Hadoop cluster
- Realize a suitable data structure and interfaces
- Machine learning
- Dashboards, feedback to sources and researchers

Machine Learning

 Predicting: a model can infer a single aspect of the data (predicted variable) from some combination of other aspects of the data (predictor variables).

Examples: detecting off-task behavior, failure to answer a question correctly despite having a skill.

 Clustering: finding data points that group together and can be used to split a full dataset into categories.


Examples: grouping students based on their learning difficulties and interaction patterns.

 Relationship mining: discovering relationships between variables and encoding them as rules for later use.

Examples: discover associations between student performance and course sequences, discovering most effective pedagogical strategies.

Machine Learning

Helps to answer the questions:

- What sequence of topics is most effective for a specific student?
- What student actions are associated with more learning (e.g., higher grades)?
- What student actions indicate satisfaction, engagement, learning progress, etc.?
- What features of an online learning environment lead to better learning?
- What will predict student success?

Thank you

for your attention

